陈鹏玉,男,汉族,中共党员,1986年10月生,甘肃秦安人,理学博士,教授、博士生导师,万象城娱乐allwincity体育副院长。2023年入选甘肃省领军人才(省级人才称号),2022年入选甘肃省“飞天学者”特聘计划(省级人才计划),2021年获甘肃省杰出青年基金资助(省级人才项目)。兼任美国《Math Review》和德国《Zentralblatt MATH》评论员,甘肃省等多个省份省级科技专家。
主要从事非线性分析与随机动力系统的研究,特别关注(随机)非局部发展方程的适定性与解的渐近行为,将非线性泛函分析的思想方法与无穷维随机动力系统理论引入到对非局部发展方程的适定性与随机动力学行为的研究中,获得了一系列重要成果。近年来在国际权威数学期刊Mathematische Annalen(小数学年刊)、SIAM Journal on Mathematical Analysis、Journal of Geometric Analysis、Journal of Dynamics and Differential Equations、Discrete and Continuous Dynamical Systems、Journal of Evolution Equations、Zeitschrift für Angewandte Mathematik und Physik、Bulletin des Sciences Mathématiques、Journal of Mathematical Physics等上发表学术论文80余篇,相关成果得到了包括Mathematische Annalen、SIAM Journal on Mathematical Analysis、Journal of Functional Analysis、International Mathematics Research Notices、Journal of Nonlinear Science、Journal of Differential Equations、Nonlinearity 等权威期刊文章的正面评价和引用。到目前为止发表论文总被引1600余次,H-index为24。主持国家自然科学基金项目3项(面上、地区、青年各1项),甘肃省杰出青年基金与甘肃省自然科学基金重点项目等科研项目近10项。研究成果获甘肃省自然科学奖三等奖(2021,排名第一)、甘肃省自然科学奖二等奖(2018,排名第二)、甘肃省高等学校科学研究优秀成果三等奖(2017,排名第一))及甘肃省高校科技进步奖一等奖(2012,排名第五)。
主要承担本科生《泛函分析》、《常微分方程边值问题》、《高等数学》及研究生《现代数学基础》、《泛函分析(续)》、《非线性泛函分析》、《抽象空间微分方程》、《常微分方程理论》等课程的教学工作。主持完成万象城娱乐allwincity体育校级一流本科课程及教学改革与研究项目6项,作为骨干成员完成甘肃省高校大学生就业创业能力提升工程项目3项,指导学生获高教社杯全国大学生数学建模竞赛国家二等奖、省级特等奖、一等奖等多项。于2023年获万象城娱乐allwincity体育校级教学名师奖,于2023年作为骨干成员获批甘肃省优秀基层教学组织,于2024年作为牵头人获批万象城娱乐allwincity体育校级教学团队,作为《泛函分析》课程负责人获批2024年甘肃省省级一流本科课程。
学习经历
2004.09-2008.06,万象城娱乐allwincity体育数学与应用数学专业读本科并于2008年6月获理学学士学位;2008.09-2011.06,万象城娱乐allwincity体育基础数学专业攻读硕士学位,导师:李永祥教授,于2011年6月获理学硕士学位;
2011.09-2014.06,万象城娱乐allwincity体育基础数学专业攻读博士学位,导师:李永祥教授,于2014年6月获理学博士学位;
2018.07-2018.08,访问中国科学院数学与系统科学研究院张志涛研究员(国家杰出青年基金获得者、万人计划领军人才);
2019.07-2019.08,访问上海师范大学数学系王荣年教授并参加其组织的暑期讨论班;
2020.01-2021.01,受国家留学基金资助作为访问学者访问美国New Mexico Technology大学数学系Bixiang Wang教授;
2021.05-2021.06、2023.03-2023.04,访问北京应用物理与计算数学研究所郭柏灵院士。
主持的科研项目
[1]国家自然科学基金面上项目(12471231),起止年月:202501-202812,在研.
[2]甘肃省杰出青年基金项目(21JR7RA159), 起止年月:202111-202410,在研.
[3]国家自然科学基金地区科学基金项目(12061063), 起止年月:202101-202412,在研.
[4]万象城娱乐allwincity体育重大科研项目培育计划项目(NWNU-LKZD2023-03), 起止年月:202307-202606,在研.
[5]万象城娱乐allwincity体育青年教师科研能力提升计划重点项目(NWNU-LKQN2019-3), 起止年月:202001-202312,已结项.
[6]国家自然科学基金青年科学基金项目(11501455), 起止年月:201601-201812,已结项.
[7]甘肃省自然科学基金重点项目(1606RJZA015), 起止年月:201609-201808,已结项.
[8]国家公派出国留学基金项目(201908625016),起止年月:202001-202101,已结项.
[9]甘肃省高等学校科研项目(2015A-003), 起止年月:201507-201612,已结项.
[10]万象城娱乐allwincity体育青年教师科研能力提升计划一般项目(NWNU-LKQN-14-3), 起止年月:201501-201712,已结项.
所获奖励与荣誉
[1]甘肃省领军人才(第二层次),中共甘肃省委 甘肃省人民政府,2023年12月,独立.
[2]第四批甘肃省“飞天学者”特聘计划(青年学者),甘肃省学位委员会 甘肃省教育厅,2022年7月8日,独立.
[3]西北师范大学校级教学名师奖,万象城娱乐allwincity体育,2023年6月,独立.
[4]2024年度全球前2%顶尖科学家榜单,2024年9月,独立.
[5]陈鹏玉,李永祥,李宝麟,张旭萍,苟海德,几类非局部发展方程的适定性与解的渐近行为,甘肃省自然科学奖三等奖(证书编号:2020-Z3-003-R1),授奖日期:2021年1月30日.
[6]李永祥,陈鹏玉,杨和,范虹霞,抽象半线性发展方程的可解性,甘肃省自然科学奖二等奖(证书编号:2017-Z2-003-R2),授奖日期:2018年1月25日.
[7]陈鹏玉,李永祥,杨和,张旭萍,范虹霞,李强,具有非局部初始条件的非线性发展方程及相关问题研究(证书编号:2017KYCGC-013),甘肃省高等学校科研优秀成果三等奖, 授奖日期:2017年10月.
[8]李永祥,杨和,慕嘉,范虹霞,陈鹏玉,丁永宏,李俊杰,某些非线性微分方程的周期解及相关问题研究(证书编号:1-07),甘肃省高等学校科技进步奖一等奖, 授奖日期:2012年8月31日.
[9]万象城娱乐allwincity体育优秀共产党员,万象城娱乐allwincity体育,2023年6月,独立.
[10]万象城娱乐allwincity体育第二届“青年教师教学科研之星”, 2016年5月,独立.
[11]万象城娱乐allwincity体育2016年度“优秀班主任”荣誉称号,2016年12月,独立.
[12]指导学生获高教社杯全国大学生数学建模竞赛本科组二等奖2项(2019、2024)、甘肃赛区特等奖2项(2019、2024)、甘肃赛区一等奖2项(2017、2018)、甘肃赛区二等奖2项(2021、2022).
[13]指导研究生获研究生国家奖学金5项(丁凯波、张晓慧、幸珍、安佳辉、高亚兵).
教材与专著
[1]陈鹏玉,李永祥,张旭萍,杨和,泛函分析,科学出版社,2024.
[2]陈鹏玉,李永祥,张旭萍,抽象发展方程非局部问题的可解性及其应用,科学出版社,2018.
代表性学术论文(T1—国际一流期刊,T2—国际知名期刊,T3—高水平期刊)
[1]Pengyu Chen, Bixiang Wang,Renhai Wang, Xuping Zhang, Multivalued random dynamics of Benjamin-Bona-Mahony equations driven by nonlinear colored noise on unbounded domains,Mathematische Annalen,386(1-2): 343-373, 2023(国际顶级综合数学期刊,T1).
[2]Pengyu Chen, Renhai Wang, Xuping Zhang,Asymptotically autonomous robustness of random attractors for 3D BBM equations driven by nonlinear colored noise, SIAM J. Math. Anal., 56(1),254-274, 2024(国际著名数学期刊, T2).
[3]Renhai Wang, Pengyu Chen*, Enhanced mean random attractors for nonautonomous mean random dynamical systemsin product Bochner spaces, Commu. Math. Statist., 2024, https://doi.org/10.1007/s40304-024-00396-4(T1).
[4]Pengyu Chen, Wei Feng, Fractional evolution equations with nonlocal initial conditions and superlinear growth nonlinear terms,Qual. Theory Dyn. Syst., 23(22),69, 2024(T3).
[5]Wei Feng, Pengyu Chen*, Non-autonomous fractional nonlocal evolution equations with superlinear growth nonlinearities, Appl. Math. Lett., 157, Paper No. 109202, 6 pp, 2024(T3).
[6]PengyuChen, Xiaohui Zhang, Xuping Zhang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations with delay on R^n, J. Dynam. Differential Equations, 35(4): 3459-3485, 2023(T3).
[7]Pengyu Chen, Mirelson M. Freitas, Xuping Zhang, Random attractor, invariant measures and ergodicity of lattice p-Laplacian equations driven by superlinear noise,J. Geom. Anal., 33: 98, 2023(T2).
[8]Rong Liang, Pengyu Chen*,Existence of weak pullback mean random attractors for stochastic Schrödinger lattice systems driven by superlinear noise, Discrete Contin. Dyn. Syst. Ser. B, 28(9): 4993-5011, 2023(T3).
[9]Xuping Zhang, Pengyu Chen*, Weak mean attractors of stochastic p-Laplacian delay lattice systems driven by nonlinear noise, Bull. Sci. Math., 182,Paper No. 103230, 31 pp, 2023(T2).
[10]Pengyu Chen, Xuping Zhang,Random dynamics of stochastic BBM equations driven by nonlinear colored noise on unbounded channel, J. Evolution Equations, 22:87, 2022(T3).
[11]Pengyu Chen, Bixiang Wang, Xuping Zhang, Dynamics of fractional nonclassical diffusion equations with delay driven by additive noise on R^n, Discrete Contin. Dyn. Syst. Ser. B, 27(9): 5129-5159, 2022(T3).
[12]Pengyu Chen, Xuping Zhang, Zhitao Zhang, Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays,Discrete Contin. Dyn. Syst. Ser. B, 27 (3):1611-1627, 2022(T3).
[13]Pengyu Chen, Renhai Wang, Xuping Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math.,173, 103071, 2021(T2).
[14]Pengyu Chen, Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. A, 41(6): 2725-2737, 2021(T2).
[15]Pengyu Chen, Xuping Zhang, Existence of attractors for stochastic diffusion equations with fractional damping and time-varying delay, J. Math. Phys., 62, Paper No.022705, 2021(T2).
[16]Pengyu Chen, Xuping Zhang, Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay, Discrete Contin. Dyn. Syst. Ser. B, 26(8): 4325-4357, 2021(T3).
[17]Pengyu Chen, Periodic solutions to non-autonomous evolution equations with multi-delays, Discrete Contin. Dyn. Syst. Ser. B, 26(6): 2921-2939, 2021(T3).
[18]Pengyu Chen, Xuping Zhang, Non-autonomous stochastic evolution equations of parabolic typewith nonlocal initial conditions, Discrete Contin. Dyn. Syst. Ser. B, 26(9):4681-4695,2021(T3).
[19]Pengyu Chen, Yongxiang Li, Xuping Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B,26(3): 1531-1547, 2021(T3).
[20]Pengyu Chen, Weifeng Ma, The solution manifolds of impulsive differential equations, Appl. Math. Lett., 116,Paper No.107000, 2021(T3).
[21]Pengyu Chen, Weifeng Ma, Shu Tao, Kaibin Zhang, Blowup and global existence of mild solutions for fractional extended Fisher-Kolmogorov equations, Int. J. Nonlinear Sci. Numer. Simul.,22(6): 641-656, 2021(T3).
[22]Pengyu Chen, Zhen Xin, Xuping Zhang, Lipschitz stability of nonlinear ordinarydifferential equations withnon-instantaneous impulses in orderedBanach spaces, Int. J. Nonlinear Sci. Numer. Simul., 22(6): 657-663, 2021(T3).
[23]Pengyu Chen, Xuping Zhang, Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations, Evol. Equ. Control Theory, 10(3): 471-489, 2021.
[24]Pengyu Chen, Xuping Zhang, Yongxiang Li, Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14(2): 559-584, 2020(T3).
[25]Pengyu Chen, Xuping Zhang, Yongxiang Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calcu. Appl. Anal., 23(1): 268-291, 2020(T3).
[26]Pengyu Chen, Xuping Zhang, Yongxiang Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control. Syst., 26(1): 1-16, 2020.
[27]Pengyu Chen, Xuping Zhang, Yongxiang Li, Non-autonomous evolution equations of parabolic type with non-instantaneous impulses, Mediterr. J. Math., 16, Art. 118, 2019.
[28]Pengyu Chen, Xuping Zhang, Yongxiang Li, Non-autonomous parabolic evolution equations with non-instantaneous impulses governed by noncompact evolution families, J. Fixed Point Theory Appl., 21, Art. 84, 2019(T3).
[29]Pengyu Chen, Yibo Kong, Monotone iterative technique for periodic boundary value problem of fractional differential equation in Banach spaces, Int. J. Nonlinear Sci. Numer. Simul., 20(5): 595-599, 2019(T3).
[30]Pengyu Chen, Xuping Zhang, Yongxiang Li, Fractional non-autonomous evolution equation with nonlocal conditions, J. Pseudo-Differ.Oper. Appl., 10(4):955-973, 2019.
[31]Pengyu Chen, Zhen Xin, Jiahui An, Continuous dependence on data for solutions of fractional extended Fisher-Kolmogorov equation, Int. J. Nonlinear Sci. Numer. Simul., 19(7-8): 735-739, 2018(T3).
[32]Pengyu Chen, Xuping Zhang, Yongxiang Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun.Pure Appl. Anal., 17(5):1975-1992,2018(T2).
[33]Pengyu Chen, Xuping Zhang, Yongxiang Li, Regularity for evolution equations with nonlocal initial conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 112(2): 539-553, 2018.
[34]Pengyu Chen,Yabing Gao, Positive solutions for a class of nonlinear fractional differential equations with nonlocal boundary value conditions, Positivity,22(3): 761-772, 2018.
[35]Pengyu Chen,Yibo Kong, Yongxiang Li, Asymptotic stability of strong solutions for evolutionequations with nonlocal initial conditions, Bull. Korean Math. Soc.,55(1):319-330, 2018.
[36]Pengyu Chen, Ahmed Abdelmonem, Yongxiang Li, Global existence and asymptotic stabilityof mild solutionsforstochastic evolution equations with nonlocal initial conditions, J. Integral Equations Appl.,29(2):325-348, 2017(T3).
[37]Pengyu Chen, Xuping Zhang, Yongxiang Li, Approximation technique for fractional evolutionequations with nonlocal integral conditions, Mediterr. J. Math., 14 (6):1-16, 2017.
[38]Pengyu Chen, Xuping Zhang, Yongxiang Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73(5):794-803, 2017.
[39]Pengyu Chen, Xuping Zhang, Yongxiang Li, Iterative method for a new class of evolution equations with non-instantaneous impulses, Taiwanese J. Math., 21(4): 913-942, 2017.
[40]Pengyu Chen, Xuping Zhang, Yongxiang Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calcu. Appl. Anal., 19(6): 1507-1526, 2016(T3).
[41]Pengyu Chen, Xuping Zhang, Yongxiang Li, Existence of mild solutions to partial differential equations with non-instantaneous impulses, Electron. J. Differential Equations, No. 241, 11 pp, 2016.
[42]Pengyu Chen, Yongxiang Li,Xuping Zhang, Double perturbations for impulsive differential equations in Banach spaces, Taiwanese J. Math., 20(5): 1065-1077, 2016.
[43]Pengyu Chen, Yongxiang Li, Xuping Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (5): 1817-1840, 2015(T2).
[44]Pengyu Chen, Yongxiang Li, Xuping Zhang, Existence and uniqueness of positive mild solutions for nonlocal evolution equations, Positivity, 19: 927-939, 2015.
[45]Pengyu Chen, Yongxiang Li, Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66(1): 63-76, 2015.
[46]Pengyu Chen,Yongxiang Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65(4): 711-728, 2014(T2).
[47]Pengyu Chen, Yongxiang Li, Qiyu Chen, Binhua Feng, On the initial value problem of fractional evolution equations with noncompact semigroup, Comput. Math. Appl.,67(5): 1108-1115, 2014.
[48]Pengyu Chen, Yongxiang Li, Existence and uniqueness of strong solutions for nonlocal evolution equations, Electron. J. Differential Equations, No. 18, 9 pp, 2014.
[49]PengyuChen, Yongxiang Li, Monotone iterative method for abstract impulsive integro-differential equations with nonlocal conditions in Banach spaces, Appl. Math., 59(1): 99-120, 2014.
[50]Pengyu Chen, Yongxiang Li, Qiang Li, Existence of mild solutions for fractional evolution equations with non-local initial conditions, Ann. Polon. Math., 110(1):13-24, 2014.
[51]Pengyu Chen, Yongxiang Li, Monotone iterative technique for a class ofsemilinear evolution equations with nonlocal conditions,Results Math., 63(3-4): 731-744 , 2013(T3).
[52]Pengyu Chen, Yongxiang Li, He Yang, Perturbation method for nonlocal impulsive evolution equations,Nonlinear Anal. Hybrid Syst., 8: 22-30 , 2013(T1).
[53]Pengyu Chen,Yongxiang Li, Mixed monotone iterative technique for a class ofsemilinear impulsive evolution equations in Banach spaces, Nonlinear Anal.,74(11): 3578-3588, 2011(T3).
[54]Pengyu Chen, Jia Mu, Monotone iterative method for semilinear impulsive evolution equations of mixed type in Banach spaces, Electron. J. Differential Equations, No. 149, 13 pp, 2010.
[55]QiangLi, Yongxiang Li,Pengyu Chen, Existence and uniqueness of periodic solutions for parabolic equation with nonlocal delay, KodaiMath. J., 39(2): 276-289, 2016.
[56]Xuping Zhang, Pengyu Chen,Yongxiang Li, Fractional retarded differential equations involving mixed nonlocal plus local initial conditions, Numer. Funct. Anal. Optim.,40(14):1678-1702, 2019.
[57]Xuping Zhang, Pengyu Chen*, Yongxiang Li, Monotone iterative method for retarded evolution equations involving nonlocal and impulsive conditions, Electron. J. Differential Equations, Vol. 2020, No. 68, pp. 1-25, 2020.
[58]Xiaolan Qin, Pengyu Chen, Renhai Wang, Mean attractors of stochastic delay lattice p-Laplacian equations driven by superlinear noise in high-order product Bochner spaces, Appl. Math. Lett., 147,Paper No. 108834, 10 pp, 2024(T3).
[59]Kaibo Ding,Pengyu Chen*, Xuping Zhang, Monotone iterative method for S-asymptotically \omega-periodic problem of time-space fractional reaction-diffusion equation with nonlocal initial condition, Discrete Contin. Dyn. Syst.Ser. S, doi:10.3934/ dcdss. 2024142.
[60]Wei Feng, Pengyu Chen*, Existence results for fractional evolution equations with superlinear growth nonlinear terms, DiscreteContin. Dyn. Syst.Ser. S, 17(3): 994-1010, 2024.
联系方式
地址:甘肃省兰州市安宁区安宁东路967号 邮编:730070
万象城娱乐allwincity体育致勤楼(9号教学楼)B309室
E-mail: chpengyu123@163.com、chenpy@nwnu.edu.cn