伏升茂老师简介

文章来源:管理员发布日期:2017-03-19浏览次数:14009



伏升茂,男,汉族,1966年生于甘肃秦安。1988年本科毕业于万象城娱乐allwincity体育数学系1991年硕士研究生毕业于陕西师范大学数学系、2001年博士研究生毕业于兰州大学数学系并获博士学位(偏微分方程方向)。1991年在万象城娱乐allwincity体育参加工作至今,2003年至2005年期间在中山大学数学与计算科学学院博士后流动站工作。现任万象城娱乐allwincity体育二级教授、博士研究生指导教师(偏微分方程和生物数学方向)和教育博士研究生指导教师、中国生物数学学会常务理事,美国《Mathematical Reviews》评论员。

 主要研究方向为偏微分方程与生物数学,已发表论文100余篇。2007年发表在《数学学报》的论文“三种群食物链交错扩散模型的整体解”被选入《科技导报》2007年第25卷第3期:近期国内中文报刊重要科技文章篇目辑览。2013年发表在《Nonlinear Analysis: RWA》上的论文Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure”被列入该杂志当年Top 5。 

主持完成4项国家自然科学基金课题、2项甘肃省自然科学基金课题、1项甘肃省属高校基本科研业务费课题和2甘肃省教委科研基金,参与完成6项国家自然科学基金课题。现主持和参与国家自然科学基金1项。

承担的主要课程有:《数学分析》《常微分方程》《实变函数论》;《广义函数与Sobolev空间》《偏微分方程》《非线性椭圆型方程》《非线性抛物型方程》《演化方程逼近论》和《生物数学》等。

曾获西北师范大学教学名师奖、万象城娱乐allwincity体育教学质量优秀教师奖和甘肃省普通高等学校青年教师成才奖等。 


联系方式:

址: 甘肃省兰州市安宁区安宁东路967号  邮编:730070       

办公地点: 万象城娱乐allwincity体育致勤楼C307室                 

E-mail: fusm@nwnu.edu.cn


科研项目:

2002.04-2003.12:国家自然科学基金数学天元基金资助项目(10226029),主持;

2006.10-2008.10甘肃省自然科学基金资助项目(3ZS061-A25- 015), 主持;

2006.10-2008.12:甘肃省教委科研基金资助项目(0601-21),主持;

2009.03-2010.12:甘肃省自然科学基金资助项目(096RJZA118),主持;

2011.01-2013.12:国家自然科学基金地区科学基金项目(11061031),主持;

2012.01-2014.12:甘肃省属高校基本科研业务费,主持;

2014.01-2017.12:国家自然科学基金地区科学基金项目(11361055),主持;

2018.01-2021.12家自然科学基金地区科学基金项目(11761063),主持;

2022.01-2025.12:国家自然科学基金地区科学基金项目 (12161080),主持


发表的部分学术论文:

[1] Shengmao Fu, Ruyun Ma, Existence of a global coexistence state for periodic competition diffusion systems. Nonlinear Analysis: TMA 1997, 28(7):1265-1271. (SCI, EI)

[2] Ruyun Ma, Jihui Zhang, Shengmao Fu, The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl., 1997, 215(2):  415-422. (SCI)

[3] Shengmao Fu, Shangbin Cui, Persistence in a periodic competitor-competitor-mutualist diffusion system, J. Math. Anal. Appl., 2001, 263(1):234-245.(SCI)

[5] Shengmao Fu, Shangbin Cui, Quasisolutions and dynamics of time-periodic nonquasi- monotone reaction-diffusion systems, J. Math. Anal. Appl., 2006, 315(1): 349-358. (SCI)

[6] Shengmao Fu, Zijuan Wen, Shangbin Cui, Uniform boundedness and stability of global solutions in a strongly coupled three-species cooperating model, Nonlinear Analysis: RWA , 2008, 9(2): 272-289. (二区SCI, EI, IF2008=1.778)

[7] Fang Yang, Shengmao Fu, Global solution for a tritrophic food chain model with diffusion, Rocky Mountain J. Math. 2008, 38(5): 1785-1812. (ISTP, SCI)

[8] Shengmao Fu, Shangbin Cui, Global existence and stability of solution of a reaction-diffusion model for cancer invasion, Nonlinear Analysis: RWA, 200910(3): 1362-1369. (SCIE一区IF2009=2.381)

[9] Zijuan Wen, Shengmao Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics, Journal of Computational and Applied Mathematics 230 (2009) 34–43. (SCI 1.048)

[10] Huaihuo Cao, Libin Liu, Yong Zhang, Shengmao Fu, A fourth-order method of the convection-diffusion equations with Neumann boundary conditions. Appl. Math. Comput. 2011, 217 (22): 9133–9141. (SCI1.124)

[11] Lina Zhang, Shengmao Fu, Ping Hu, Effect of cross diffusion in a competition model with stage structure, International Journal of Biomathematics, Vol. 5, No. 6 (November 2012) 1250052 (18 pages). (SCIE)

[12] Shengmao Fu, Lina Zhang, Ping Hu, Global behavior of solutions in a Lotka-Volterra    predator-prey model with prey-stage structure, Nonlinear Analysis: RWA, vol. 14, no. 5, pp.  2027–2045, 2013. (一区SCIE, IF2013=2.201)被列入该杂志Most popular articles in 2013,入选Top 5

[13] Shengmao Fu, Yujuan Jiao, Zhongwei Tang, Multi-bump bound states for a nonlinear Schrödinger system with electromagnetic fields. Journal of Mathematical Analysis and Applications, vol. 404, no. 2, pp. 239–259, 2013. (SCI, IF2013=1.05)

[14] Shengmao Fu, Ji Liu, Spatial pattern formation in the Keller-Segel model with a logistic source, Computers and Mathematics with Applications, vol. 66, no. 3, pp. 403–417, 2013. (SCI, IF2013=2.069)

[15] Shengmao Fu, Yujuan Jiao, Least energy solutions for a non-linear Schrödinger system with electromagnetic fields and potential wellsApplicable Analysis, 2014Vol. 93, No. 1, 137-152, http://dx.doi.org/10.1080/00036811.2012.762089 (SCIE)

[16] Xiaojuan Li, Shengmao Fu, Global stability of the virus dynamics model with intracellular delay and Crowley-Martin functional response.Mathematical Methods in the Applied Sciences,37 (2014), no. 10, 1405–1411.  (SCIE, IF2013=0.778)

[17] Xiaojuan Li, Shengmao Fu, Global stability of a virus dynamics model with intracellular delay and CTL immune response.Mathematical Methods in the Applied Sciences,38 (2015), no. 3, 420–430. DOI: 10.1002/mma.3078. (SCI)

[18] Liangliang Sun, Shengmao Fu, Wenjun Ma, Pattern formation in a predator–prey diffusion model with stage structure for the predator. Computers & Mathematics with Applications,70 (2015), no. 12, 2988–3000. (SCI)

[19] Shengmao Fu, Guangjian Huang, Badradeen Adam, Instability in a generalized multi-species Keller-Segel chemotaxis model, Computers & Mathematics with Applications, 72(9), 2280-2288, 2016. (SCI)

[20] Zijuan Wen, Shengmao Fu, Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects, Chaos, Solitons and Fractals 91 (2016) 379–385. (SCI)

[21] Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang, Positive steady states of a density-dependent predator-prey model with diffusion, Discrete and Continuous Dynamical Systems Series B,23 (2018), no. 8, 3087-3107.  SCI1531-3492

[22] Xiaoyan Gao, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang, Positive steady states in an epidemic model with nonlinear incidence rate, Computers and Mathematics with Applications,Volume 75, Issue 2, 15 January 2018, Pages 424-443. SCI0898-1221

[23] Yanfei Jia,Yongli Cai, Hongbo Shi, Shengmao Fu, Weiming Wang,Turing patterns in a reaction–diffusion epidemic model, International Journal of Biomathematics,Vol.11, No.2(2018)1850025(24pages). SCI,1793-5245.

[24] Haiyan Gao, Shengmao Fu, Hassan Mohammed, Existence of global solution to a two-species Keller-Segel chemotaxis model, International Journal of Biomathematics, Vol. 11, No. 2 (2018) 1850025 (24 pages) SCI

[25] Weiming Wang,  Xiaoyan Gao, Yongli Cai, Hongbo Shi,  Shengmao Fu,  Turing  patterns in a diffusive epidemic model with saturated infection force. Journal of the Franklin Institute 355 (2018) 7226–7245. SCI二区

[26] Lina Zhang, Shengmao Fu, Global bifurcation for a Holling-Tanner predator-prey model with prey-taxis, Nonlinear Analysis: Real World Applications47 (2019) 460-472.  二区SCI

[27] Wanjun Li, Xiaoyan Gao and Shengmao Fu, Temporal and spatial patterns in a diffusive ratio-dependent predator–prey system with linear stocking rate of prey speciesElectronic Journal of Qualitative Theory of Differential Equations2019, No. 80, 1–26. 1417-3875SCI

[28] Huisen Zhang, Yongli Cai, Shengmao Fu, Weiming Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Applied Mathematics and Computation 356 (2019) 328–337. 一区SCI,高被引

[29] Jing Wang, Yongli Cai, Shengmao Fu, and Weiming Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos 29, 083109 (2019) 10 pp.; https://doi.org/10.1063/1.5111121SCI

[30] Ting Qiao, Yongli Cai, Shengmao Fu, Weiming Wang, Stability and Hopf Bifurcation in a Predator–Prey Model with the Cost of Anti-Predator Behaviors, International Journal of Bifurcation and Chaos, Vol. 29, No. 13 (2019) 1950185 (10 pages) (SCIE, IF2019=0.778)

[31] Xiaoyan Gao, Sadia Ishag, Shengmao Fu, Wanjun Li, Weiming Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting,

Nonlinear Analysis: Real World Applications 51 (2020) 102962, 28 pp. 二区SCI   1468-1218

[32] Shengmao Fu, Liangying Miao, Global existence and asymptotic stability in a predator–prey chemotaxis modelNonlinear Analysis: Real World Applications 54 (2020) 10307925pp.

 二区SCIIF2019=2.072 1468-12189   

[33] Xinxin Li, Yongli Cai, Kai Wang, Shengmao Fu, Weiming Wang, Non-constant positive steady states of a host-parasite model with frequency- and density-dependent transmissions, Journal of the Franklin Institute 357 (2020) 4392–4413. 二区SCIIF2019=4.036

[34] Xiaoli HuShengmao Fu, Shangbing Ai, Global Asymptotic Behavior of Solutions for a Parabolic-Parabolic-ODE Chemotaxis System Modeling Multiple Sclerosis, Journal of Differential Equations, 269 (2020) 6875–6898. 二区SCI, IF2020 =1.938, 0022-0396

[35] Xiaoli HuShengmao Fu, Global boundedness and stability for a chemotaxis model of Bol\'{o}'s concentric sclerosis, the special issue: "Mathematical Models and Autoimmune Diseases" the area: "Models of the role of chronic inflammation in autoimmunity", Mathematical Biosciences and Engineering, 17(5): 5134–5146. SCI. 1547-1063

[36]  Meijun ChenHuaihuo CaoShengmao FuStationary pattern of a predator-prey model with both prey-stage structure and prey-taxisInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering Vol. 31, No. 3 (2021) 2150038 (18 pages) SCI二区IF2020 =2.145 0218-1274

[37] Shengmao Fu, Xue He, Lina Zhang, Zijuan Wen, Turing patterns and spatiotemporal patterns in a tritrophic food chain model with diffusion,Nonlinear Analysis: Real World Applications 59 (2021) 103260, 31pp. 二区SCI, EI, IF2019 =2.0721468-1218

[38] Shengmao Fu, Huisen Zhang, Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model, Communications in Nonlinear Science and Numerical Simulation 99 (2021) 105807,23pp. 一区SCIEI, IF2019 =3.4871007-5704

[39] Liangying Miao, He Yang, Shengmao Fu, Global Boundedness in a Two-Species Predator-Prey Chemotaxis Model, Applied Mathematics Letters 111 (2021) 106639, 8pp. 一区SCI, EI, IF2019 =3.4870893-9659

[40] Yang Yanhong, Fu Shengmao, Hopf bifurcation of a tumor immune model with time delay, Frontiers of Mathematics in China. Volume 17, Issue 2. 2022. PP 315-335. SCI

[41] Liangying Miao, Shengmao Fu, Global behavior of a two-species predator-prey chemotaxis model with signal-dependent diffusion and sensitivity, Discrete and Continuous Dynamical Systems Series B 28 (2023), no. 8, 4344-4365. SCI

[42] Meijun Chen, Shengmao Fu, Global boundedness and stabilization in a predator-prey model with cannibalism and prey-evasion,Electronic Journal of Qualitative Theory of Differential Equations(2023), Paper No. 58, 23 pp. SCI

[43] Huisen Zhang, Shengmao Fu, Canyun Huang, Global solutions and pattern formations for a diffusive prey-predator system with hunting cooperation and prey-taxis, Discrete and Continuous Dynamical Systems Series B 29 (2024) http://dx.doi.org/10.3934/dcdsb.2024017, SCI

[44] 伏升茂, 高海燕, 崔尚斌, 带自扩散和交错扩散的三种群Lotka-Volterra竞争模型解的一致有界性和稳定性, 数学年刊2006, 27A(3): 345-356.

[45] 伏升茂, 温紫娟, 崔尚斌, 三种群食物链交错扩散模型的整体解,数学学报,2007, 50A(1): 75-88.  (被选入《科技导报》2007年第25卷第3期“科技动态”栏目:近期国内中文报刊重要科技文章篇目辑览)

[46] 伏升茂, 高海燕, 崔尚斌, 竞争-竞争-互惠交错扩散模型的整体解,数学学报200851(1): 153-163.

[47] 温紫娟,伏升茂,三种群食物链交错扩散模型古典解的整体存在性和收敛性,应用数学学报200831(1): 152-163.

[48] 张丽娜,伏升茂,捕食者-食饵-互惠交错扩散模型解的整体存在性,应用数学学报, 2011341):131-138.

[49] 张杰,伏升茂,崔尚斌,一个肿瘤侵入模型的定性分析, 应用数学学报, 2011345):786-800.

[50] 胡晓丽, 伏升茂, Lotka-Volterra互惠源的多种群趋化模型的稳定性, 系统科学与数学,    37(6)1541-1554, 2017.

[51] 杨艳红, 伏升茂, 一类带时滞的肿瘤免疫模型的Hopf分支, 数学进展,2021 50(3): 383-348. T3