熊向团,男,1977年9月生,湖北武汉人,博士,万象城娱乐allwincity体育教授,博士研究生导师。
受教育经历
1997年9月-2001年6月,兰州大学计算数学及其应用软件本科生,
2001年9月-2004年6月,兰州大学基础数学硕士研究生,
2004年9月-2007年6月,兰州大学应用数学博士研究生。
科研经历
2007.7—2009.6 复旦大学数学科学学院博士后,
2010.6-2010.8 、2011.6-2011.8、2012.6-2012.8,香港城市大学数学系访问研究员,
2012.9-2013.9中科院数学与系统科学研究院“西部之光”访问学者,
2013.12-2014.2,香港浸会大学数学系客座研究学人。
承担研究项目
2010年国家自然科学基金青年基金,
2012年教育部科学技术研究重点项目,
2010年教育部博士点专项基金(新教师类)。
获得奖励
2005年获“求是奖学金”,
2014年获万象城娱乐allwincity体育“青年教师教学科研之星称号”。
发表主要论文
[1] X.T. Xiong, L. Zhao, Y.C. Hon, Stability estimate and the modified regularization method for a Cauchy problem of the fractional diffusion equation, Journal of Computational and Applied Mathematics 272 (2014) 180–194.
[2]X.T.Xiong, X.Y.Fan, M.Li, Spectral method for ill-posed problems based on the balancing principle, to appear in Inverse Problems in Science and Engineering.
[3] X.T. Xiong, M.Li and M.Q.Wang, A one-stage meshless method for nonhomogeneous Cauchy problems of elliptic partial differential equations with variable coefficients, Journal of Engineering Mathematics, 80 (2013), 189-200.
[4] X.T.Xiong, X.C.Zhao and J.X.Wang, Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation, Numerical Algorithms, 63 (2013) 691-711.
[5] X.T.Xiong and Y.C. Hon, Regularization error analysis on a one-dimensional inverse heat conduction problem in multi-layer domain, Inverse Problems in Science & Engineering, 21(2013) 865-887
[6]X.T.Xiong, J.X.Wang, A Tikhonov-type method for solving a multidimensional inverse heat source problem in an unbounded domain, Journal of Computational and Applied Mathematics 236(2012) 1766-1774.
[7]X.T.Xiong,Q.Zhou and Y.C.Hon, An inverse problem for fractional diffusion equation in 2-dimensional case: Stability analysis and regularization,Journal of Mathematical Analysis and Applications 393 (2012) 185-199.
[8]X.T.Xiong,H.Guo and X.Liu, An inverse problem for a fractional diffusion equation,Journal of Computational and Applied Mathematics 236(2012) 4474-4484.
[9]X.T.Xiong,J.X.Wang and M.Li, An optimal method for fractional heat conduction problem backward in time,Applicable Analysis, 91(2012), No. 4, 823-840.
[10]X.T.Xiong,W.X.Shi and X.Y.Fan, Two numerical methods for a Cauchy problem for modified Helmholtz equation,Applied Mathematical Modelling, 35(2011) 4951-4964.
[11]X.T.Xiong,L.Q.Zhu and M.Li, Regularization methods for a problem of analytic continuation, Mathematics and Computers in Simulation, 82(2011) 332-345.
[12]X.T.Xiong,Y.M.Yan and J.X.Wang, A direct numerical method for solving inverse heat source problems, Journal of Physics: Conference Series 290(2011) 012017.
[13] X.T.Xiong, On a radially symmetric inverse heat conduction problem, Appl. Math. Modelling, 34( 2010), 520-529.
[14] X.T.Xiong, A regularization method for a Cauchy problem of Helmholtz equation, J.Comput. Appl. Math.,233( 2010), 1723-1732.
[15] X.T.Xiong et al, A numerical method for identifying heat transfer coefficient, Appl.Math.Modelling, 34 (2010), 1930-1938.
[16]X.T.Xiong,C.L.Fu,J.Cheng, Three spectral methods for solving a sideways parabolic equation within the framework of regularization theory, Mathematics and Computers in Simulation, 79( 2009),1668-1678.
[17]X.T.Xiong,C.L.Fu, A spectral regularization mehtod for solving surface heat flux on a general sideways parabolic equation, Appl. Math.Comput.,197(2008),358-365.
[18]X.T.Xiong, C.L.Fu, Determining surface temperature and heat flux by a wavelet dual least squares method, Journal of Computational and Applied Mathematics,201(2007),198-207.
[19]X.T.Xiong, C.L.Fu, Error estimates on a backward heat equation by a wavelet dual least squares method,International Journal of Wavelets, Multiresolution and Information Processing,5(3)(2007),389-398.
[20]X.T.Xiong,C.L.Fu,Z.Qian, On three spectral regularization methods for a backward heat conduction problem, Journal of the Korean Mathematical Society,44(2007),1281-1290.
[21]X.T.Xiong,C.L.Fu, Two approximate methods of a Cauchy problem for the Helmholtz equation, Computational and Applied Mathematics, 26(2007),. 285-307.
[22]X.T.Xiong,C.L.Fu and H.F.Li, Central difference method of a non-standard inverse heat conduction problem for determining surface heat flux from interior observations, Appl. Math. Comput.,173(2006), 1265-1287.
[23]X.T.Xiong,C.L.Fu and H.F.Li, Fourier regularization method of a sideways heat equation for determining surface heat flux, J. Math. Anal. Appl.,317(2006), 331-348.
[24]X.T.Xiong,C.L.Fu, Central difference regularization method for the Cauchy problem of the Laplace’s equation, Applied Mathematics and Computation,181(2006),675-684.
[25]X.T.Xiong,C.L.Fu and Z Qian, Two numerical methods for solving a backward heat conduction problem, Applied Mathematics and Computation,179(2006),370-377.
[26]X.T.Xiong,C.L.Fu, Z.Qian and G.Xiang, Error estimates of a difference approximation method for a backward heat conduction problem, International Journal of Mathematics and Mathematical Sciences, Volume 2006,Article ID 45489,1-9.
[27]X.T.Xiong,C.L.Fu and H.F.Li, Central difference schemes in time and error estimate on a non-standard inverse heat conduction problem, Appl. Math. Comput.,157(2004), 77-91.
[28]C.L.Fu,X.T.Xiong and Z.Qian, Fourier regularization method for a backward heat conduction problem, J.Math.Anal.Appl.,331(2007),472-480.
[29]C.L.Fu, H.F. Li,X.T.Xiong, Iterated Tikhonov Regularization for Ill-Posed Problems, Chinese J. Numer. Math. and Appl., 28(4) (2006), 1-10.
[39]C.L.Fu,X.T.Xiong,H.F.Li and Y.B.Zhu, Wavelet and spectral regularization methods for a sideways parabolic equation, Appl. Math. Comput., 160(2005), 881-908.
[31]C.L.Fu,X.T.Xiong,H.F.Li, Fourier regularization for determining surface heat flux from interior observation based on a sideways parabolic equation, Numerical Mathematics A Journal of Chinese Universities (English Series), 14(3,(2005), 16-24.
[32]C.L.Fu, X.T.Xiong and P.Fu, Fourier regularization method for solving the surface heat flux from interior observations, Math. Comput. Model.,42(2005),489-498.
[33]C.L.Fu,X.T.Xiong and H.F.Li, A Fourier regularization method with Holder stability for a sideways parabolic equation, J. Lanzhou Univ., 40(2)( 2004), 5-7.
[34]Z.Qian,C.L.Fu and X.T.Xiong, A modified method for determining surface heat flux of IHCP, Inverse Problems in Science,15(2007),249-265.
[35]Z.Qian,C.L.Fu and X.T.Xiong, A modified method for determining surface heat flux of IHCP, Inverse Problems in Science,15(2007),249-265.
[36]M.Li, X.T.Xiong, Y.J. Wang, A numerical evaluation and regularization of Caputo fractional derivatives,Journal of Physics: Conference Series 290 (2011) 012011.
[37] M.Li, X.X.Xi, X.T.Xiong, Regularization for a fractional sideways heat equation. J. Comput. Appl. Math. 255 (2014), 28–43.
[38] M.Li, X.T.Xiong, Y. Li, Method of fundamental solution for an inverse heat conduction problem with variable coefficients. Int. J. Comput. Methods 10 (2013), no. 2, 1341009, 12 pp.
[39]Q.Zhi,Y.C.Hon,X.T.Xiong,Numerical solution of two-dimensional radially symmetric inverse heat conduction problem, to appear in Journal of Inverse and Ill-Posed Problems (JIIP)
[40] 石万霞, 熊向团,多层介质中逆热传导问题的傅里叶正则化方法,应用数学与计算数学学报,2012年9月26卷第3期 348-354.