陈天兰,女,汉族,1986年5月生,中共党员。2017年6月在万象城娱乐allwincity体育获理学博士学位,师从马如云教授。现为万象城娱乐allwincity体育副教授,硕士研究生导师。主要从事微分及差分方程问题等相关的研究,在《Discrete Contin. Dyn. Syst. Ser. B》、《J. Math. Anal. Appl.》、《Complex Var. Elliptic Equ.》、《Rocky Mountain J. Math.》、《Appl. Anal.》和《J. Difference Equ. Appl.》等 SCI 期刊发表,并合作发表 SCI 论文二十余篇。
联系方式:
地 址: 甘肃省兰州市安宁区安宁东路967号 邮编:730070
办公地点: 万象城娱乐allwincity体育致勤楼A区1615-1室
E-mail: chentianlan511@126.com
科研项目:主持并完成国家自然科学基金青年基金1项、甘肃省青年科技基金计划项目1项;参与国家自然科学基金面上项目和地区项目各1项。
奖励和荣誉:获甘肃省优秀博士论文;作为参与人获甘肃省高校学校科研优秀成果一等奖1次。
发表的部分学术论文:
[1]Tianlan Chen*, Yali Zhao, Existence of solutions for systems of Minkowski-curvature Neumann problems, Rocky Mountain J. Math. 2023, 53(5), 1431-1444.
[2]Tianlan Chen*, Ruyun Ma, Three positive nonconstant radial solutions of nonlinear Neumann problems with indefinite weight, Applicable Analysis, 2023, 10(4), 1132-1143.
[3] Lei Duan, Tianlan Chen, Existence of convex solutions for a discrete mixed boundary value problem with the mean curvature operator, Acta Math. Sci. (Chinese), 2022, 4A(2), 379-386.
[4]Tianlan Chen*, Yanqiong Lu, Ruyun Ma, Nodal solutions for an elliptic equation in an annulus without the signum condition, Bull. Korean Math. Soc., 2020, 57 (2), 331-343.
[5]Tianlan Chen*, Lei Duan, Ambrosetti-Prodi type results for a Neumann problem with a mean curvature operator in Minkowski spaces, Rocky Mountain J. Math., 2020, 50 (5), 1627-1635.
[6]Tianlan Chen*, Ruyun Ma, Three positive solutions of N-dimensional p-Laplacian with indefinite weight, Electron. J. Qual. Theory Differ. Equ., 2019, 2019 (19), 1-14.
[7]Tianlan Chen*, Ruyun Ma, Yongwen Liang. Multiple positive solutions of second-order nonlinear difference equations with discrete singular-Laplacian, J. Difference Equ. Appl., 2019, 25(1): 38-55.
[8]Tianlan Chen*, Ruyun Ma, Yongwen Liang . Positive solutions of Neumann problems for a discrete system coming from models of house burglary, Turkish J. Math., 2018, 42: 2371-2379.
[9]Ruyun Ma, Honglian Gao, Tianlan Chen, Radial positive solutions for Neumann problems without growth restrictions, Complex Var. Elliptic Equ., 2016, 62(6): 848-861.
[10] Ruyun Ma, Tianlan Chen, Yanqiong Lu, On the Bonheure-Noris-Weth conjecture in the case of linearly bounded nonlinearities, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(8) : 2649-2662.
[11] Ruyun Ma, Tianlan Chen, Haiyan Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl., 2016, 443: 542-565.
[12]Tianlan Chen*, Ruyun Ma, Existence of positive solutions for difference systems coming from a model for burglary, Turkish J. Math., 2016, 40(5): 1049-1057.
[13]Ruyun Ma, Tianlan Chen, Hongliang Gao, On positive solutions of the Dirichlet problem involving the extrinsic mean curvature operator, Electron. J. Qual. Theory Differ. Equ., 2016, 98: 1-10.
[14] Ruyun Ma, Tianlan Chen, Multiple positive solutions for Dirichlet problem of prescribed mean curvature equations in Minkowski spaces, Electron. J. Differential Equations, 2016, (180): 1-7.
[15]Ruyun Ma, Ruipeng Chen, Tianlan Chen, Existence of positive periodic solutions of nonlinear first-order delayed differential equations, J. Math. Anal. Appl., 2011, 384 (2): 527-535.